Information sets and partial permutation decoding for codes from finite geometries

نویسندگان

  • Jennifer D. Key
  • T. P. McDonough
  • Vassili C. Mavron
چکیده

We determine information sets for the generalized Reed-Muller codes and use these to apply partial permutation decoding to codes from finite geometries over prime fields. We also obtain new bases of minimum-weight vectors for the codes of the designs of points and hyperplanes over prime fields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Permutation decoding for codes from designs, finite geometries and graphs

The method of permutation decoding was first developed by MacWilliams in the early 60’s and can be used when a linear code has a sufficiently large automorphism group to ensure the existence of a set of automorphisms, called a PD-set, that has some specifed properties. These talks will describe some recent developments in finding PD-sets for codes defined through the row-span over finite fields...

متن کامل

Partial permutation decoding for codes from finite planes

We determine to what extent permutation decoding can be used for the codes from desarguesian projective and affine planes. We define the notion of s-PD-sets to correct s errors, and construct some specific small sets for s = 2 and 3 for desarguesian planes of prime order.

متن کامل

Partial permutation decoding for codes from Paley

We examine codes from the Paley graphs for the purpose of permutation decoding and observe that after a certain length, PD-sets to correct errors up to the code’s error-capability will not exist. In this paper we construct small sets of permutations for correcting two errors by permutation decoding for the case where the codes have prime length.

متن کامل

Partial permutation decoding for codes from affine geometry designs

We find explicit PD-sets for partial permutation decoding of the generalized Reed-Muller codes RFp (2(p − 1), 3) from the affine geometry designs AG3,1(Fp) of points and lines in dimension 3 over the prime field of order p, using the information sets found in [8]. Mathematics Subject Classification (2000): 05, 51, 94.

متن کامل

On the permutation decoding for binary linear and Z4-linear Hadamard codes

Permutation decoding is a technique, introduced in [3] by MacWilliams, that strongly depends on the existence of special subsets, called PD-sets, of the permutation automorphism group PAut(C) of a linear code C. In [2], it is shown how to find s-PD-sets of minimum size s + 1 for partial permutation decoding for the binary simplex code Sm of length 2 − 1, for all m ≥ 4 and 1 < s ≤ ⌊ 2−m−1 m ⌋ . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Finite Fields and Their Applications

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2006